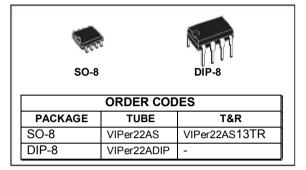


VIPer22ADIP VIPer22AS

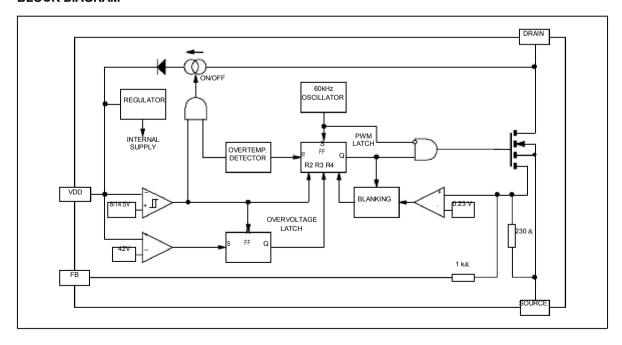
LOW POWER OFF LINE SMPS PRIMARY SWITCHER

TYPICAL POWER CAPABILITY


Mains type	SO-8	DIP-8
European (195 - 265 Vac)	12 W	20 W
US / Wide range (85 - 265 Vac)	7W	12 W

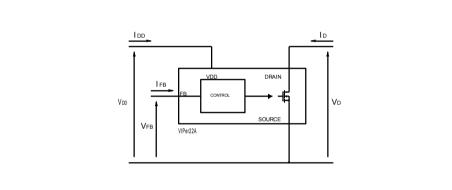
- FIXED 60 KHZ SWITCHING FREQUENCY
- 9V TO 38V WIDE RANGE VDD VOLTAGE
- CURRENT MODE CONTROL
- AUXILIARY UNDERVOLTAGE LOCKOUT WITH HYSTERESIS
- HIGH VOLTAGE START UP CURRENT SOURCE
- OVERTEMPERATURE, OVERCURRENT AND OVERVOLTAGE PROTECTION WITH AUTORESTART

DESCRIPTION

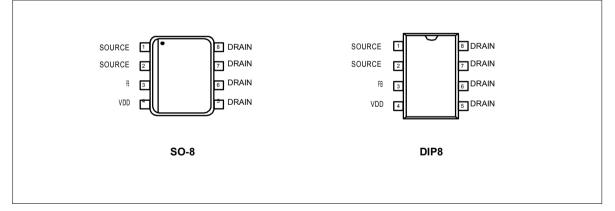

The VIPer22A combines a dedicated current mode PWM controller with a high voltage Power

MOSFET on the same silicon chip. Typical applications cover off line power supplies for battery charger adapters, standby power supplies for TV or monitors, auxiliary supplies for motor control, etc. The internal control circuit offers the following benefits:

- Large input voltage range on the VDD pin accommodates changes in auxiliary supply voltage. This feature is well adapted to battery charger adapter configurations.
- Automatic burst mode in low load condition.
- Overvoltage protection in hiccup mode.


September 2002

VIPer22ADIP / VIPer22AS


PIN FUNCTION

Name	Function		
V DD	Power supply of the control circuits. Also provides a charging current during start up thanks to a high voltage current source connected to the drain. For this purpose, an hysteresis comparator monitors the V _{DD} voltage and provides two thresholds: - V _{DDon} : Voltage value (typically 14.5V) at which the device starts switching and turns off the start up current source. - V _{DDoff} : Voltage value (typically 8V) at which the device stops switching and turns on the start up current source.		
SOURCE	Power MOSFET source and circuit ground reference.		
DRAIN	Power MOSFET drain. Also used by the internal high voltage current source during start up phase for charging the external V _{DD} capacitor.		
FB	Feedback input. The useful voltage range extends from 0V to 1V, and defines the peak drain MOSFET current. The current limitation, which corresponds to the maximum drain current, is obtained for a FB pin shorted to the SOURCE pin.		

CURRENT AND VOLTAGE CONVENTIONS

CONNECTION DIAGRAM

57

Symbol	Parameter		Value	Unit
V _{DS(sw)}	Switching Drain Source Voltage (T = $25 \dots 125^{\circ}$ C)	(See note 1)	-0.3 730	V
V _{DS(st)}	Start Up Drain Source Voltage (T =25 125°C)	(See note 2)	-0.3 400	V
I _D	Continuous Drain Current		Internally limited	Α
V _{DD}	Supply Voltage		0 50	V
I _{FB}	Feedback Current		3	mA
V _{ESD}	Electrostatic Discharge: Machine Model (R=0&; C=200pF) Charged Device Model		200 1.5	V kV
Т _ј	Junction Operating Temperature		Internally limited	°C
T _c	Case Operating Temperature		-40 to 150	°C
T _{stg}	Storage Temperature		-55 to 150	°C

ABSOLUTE MAXIMUM RATINGS

Note: 1. This parameter applies when the start up current source is off. This is the case when the VDD voltage has reached VDDon and remains above VDDoff.

2. This parameter applies when the start up current source is on. This is the case when the VDD voltage has not yet reached VDDon or has fallen below VDDoff.

THERMAL DATA

Symbol	Parameter	Max Value	Unit
Rthj-case	Thermal Resistance Junction-Pins for : SO-8 DIP-8	25 15	°C/W
Rthj-amb	Thermal Resistance Junction-Ambient for :SO-8(See note 1)DIP-8(See note 1)	55 45	°C/W

Note: 1. When mounted on a standard single-sided FR4 board with 200 mm² of Cu (at least 35 cm thick) connected to all DRAIN pins.

ELECTRICAL CHARACTERISTICS (Tj=25°C, VDD=18V, unless otherwise specified)

POWER SECTION

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Voltage	I_=1mA; ¥B=2V	730			V
I _{DSS}	Off State Drain Current	V =500V; V =2V; T =125°C			0.1	mA
R _{DSon}	Static Drain-Source On State Resistance	I _D =0.4A I _D =0.4A; _j T =100°C		15	17 31	&
t _f	Fall Time	I_D=0.2A; YN=300V (See fig.1) (See note 1))	100		ns
t r	Rise Time	I_D=0.4A; VN=300V (See fig.1) (See note 1))	50		ns
C _{oss}	Drain Capacitance	V_=25V		40		pF

Note: 1. On clamped inductive load

VIPer22ADIP / VIPer22AS

ELECTRICAL CHARACTERISTICS (Tj=25°C, VDD=18V, unless otherwise specified) SUPPLY SECTION

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I DDch	Start Up Charging Current	Vbs=100V; V =0VV _{DDon} (See fig. 2)		-1		mA
l DDoff	Start Up Charging Current in Thermal Shutdown	V =5V; V =100V ^{DD} _{DD} - Т _J > Ър - Т _{IYST}	0			mA
I DD0	Operating Supply Current Not Switching	I=2mA FB		3	5	mA
I DD1	Operating Supply Current Switching	I =0.5mA; I =50mA (Note 1)		4.5		mA
D _{RST}	Restart Duty Cycle	(See fig. 3)		16		%
V _{DDoff}	V _{DD} Undervoltage Shutdown Threshold	(See fig. 2 & 3)	7	8	9	V
V _{DDon}	V _{DD} Start Up Threshold	(See fig. 2 & 3)	13	14.5	16	V
V DDhyst	V _{DD} Threshold Hysteresis	(See fig. 2)	5.8	6.5	7.2	V
V _{DDovp}	V _{DD} Overvoltage Threshold		38	42	46	V

Note: 1. These test conditions obtained with a resistive load are leading to the maximum conduction time of the device.

OSCILLATOR SECTION

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
F _{osc}	Oscillator Frequency Total Variation	V =V _{DD DDoff} . 35V; <u>T</u> =0 100°C	54	60	66	kHz

PWM COMPARATOR SECTION

Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
G _{ID}	I _{FB} to LCurrent Gain		(See fig. 4)		560		
I _{Dlim}	Peak Current Limitation	V=0V	(See fig. 4)	0.56	0.7	0.84	А
I _{FBsd}	I _{FB} Shutdown Current		(See fig. 4)		0.9		mA
R _{FB}	FB Pin Input Impedance	I_=0mA	(See fig. 4)		1.2		k&
t _d	Current Sense Delay to Turn-Off	I_=0.4A			200		ns
t _b	Blanking Time				500		ns
t _{ONmin}	Minimum Turn On Time				700		ns

OVERTEMPERATURE SECTION

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
T _{SD}	Thermal Shutdown Temperature	(See fig. 5)	140	170		°C
T _{HYST}	Thermal Shutdown Hysteresis	(See fig. 5)		40		°C

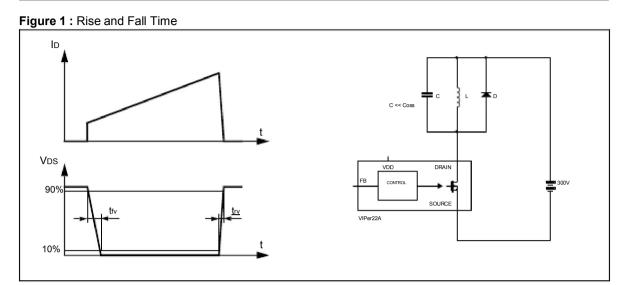


Figure 2 : Start Up VDD Current

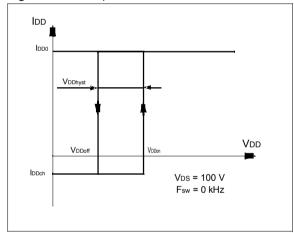
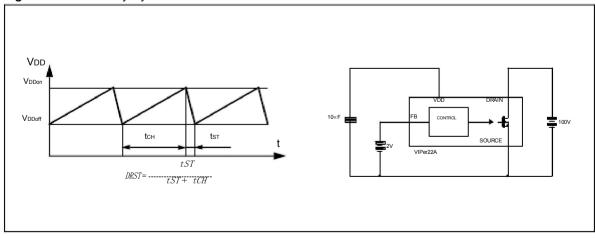



Figure 3 : Restart Duty Cycle

57