許多舊式的爐傾向于以不同速率來加熱一個裝配上的不同零件,取決于回流焊接的零件和線路板層的顏色和質地。一個裝配上的某些區(qū)域可以達到比其它區(qū)域高得多的溫度,這個溫度變化叫做裝配的D T。如果D T大,裝配的有些區(qū)域可能吸收過多熱量,而另一些區(qū)域則熱量不夠。這可能引起許多焊接缺陷,包括焊錫球、不熔濕、損壞元件、空洞和燒焦的殘留物。
較新式的回流焊接爐
大多數新式的回流焊接爐,叫做強制對流式,將熱空氣吹到裝配板上或周圍。這種爐的一個優(yōu)點是可以對裝配板逐漸地和一致地提供熱量,不管零件的顏色和質地。雖然,由于不同的厚度和元件密度,熱量的吸收可能不同,但強制對流式爐逐漸地供熱,其D T沒有太大的差別。另外,這種爐可以嚴格地控制給定溫度曲線的最高溫度和溫度速率,其提供了更好的區(qū)到區(qū)的穩(wěn)定性,和一個更受控的回流過程。
為什么和什么時候保溫
保溫區(qū)的唯一目的是減少或消除大的D T。保溫應該在裝配達到焊錫回流溫度之前,把裝配上所有零件的溫度達到均衡,使得所有的零件同時回流。由于保溫區(qū)是沒有必要的,因此溫度曲線可以改成線性的升溫-到-回流(RTS)的回流溫度曲線。
應該注意到,保溫區(qū)一般是不需要用來激化錫膏中的助焊劑化學成分。這是工業(yè)中的一個普遍的錯誤概念,應予糾正。當使用線性的RTS溫度曲線時,大多數錫膏的化學成分都顯示充分的濕潤活性。事實上,使用 RTS溫度曲線一般都會改善濕潤。
升溫-保溫-回流
升溫-保溫-回流(RSS)溫度曲線可用于RMA或免洗化學成分,但一般不推薦用于水溶化學成分,因為RSS保溫區(qū)可能過早地破壞錫膏活性劑,造成不充分的濕潤。使用RSS溫度曲線的唯一目的是消除或減少D T。
如圖一所示,RSS溫度曲線開始以一個陡坡溫升,在90秒的目標時間內大約150° C,最大速率可達2~3° C。隨后,在150~170° C之間,將裝配板保溫90秒鐘;裝配板在保溫區(qū)結束時應該達到溫度均衡。保溫區(qū)之后,裝配板進入回流區(qū),在183° C以上回流時間為60(± 15)秒鐘。
整個溫度曲線應該從45° C到峰值溫度215(± 5)° C持續(xù)3.5~4分鐘。冷卻速率應控制在每秒4° C。一般,較快的冷卻速率可得到較細的顆粒結構和較高強度與較亮的焊接點??墒牵^每秒4° C會造成溫度沖擊。
升溫-到-回流
RTS溫度曲線可用于任何化學成分或合金,為水溶錫膏和難于焊接的合金與零件所首選。如果裝配上存在較大的D T,例如工序中使用了夾具或效率低的回流焊接爐,那么RTS可能不為適當的溫度曲線選擇。
RTS溫度曲線比RSS有幾個優(yōu)點。RTS一般得到更光亮的焊點,可焊性問題很少,因為在RTS溫度曲線下回流的錫膏在預熱階段保持住其助焊劑載體。這也將更好地提高濕潤性,因此,RTS應該用于難于濕潤的合金和零件。因為RTS曲線的升溫速率是如此受控的,所以很少機會造成焊接缺陷或溫度沖擊。另外,RTS曲線更經濟,因為減少了爐前半部分的加熱能量。此外,排除RTS的故障相對比較簡單,有排除RSS曲線故障經驗的操作員應該沒有困難來調節(jié)RTS曲線,以達到優(yōu)化的溫度曲線效果。
圖二、典型的升溫-到-回流溫度曲線,從室溫到峰值溫度線性上升
設定RTS溫度曲線
如圖二所示,RTS曲線簡單地說就是一條從室溫到回流峰值溫度的溫度漸升曲線,RTS曲線溫升區(qū)其作用是裝配的預熱區(qū),這里助焊劑被激化,揮發(fā)物被揮發(fā),裝配準備回流,并防止溫度沖擊。RTS曲線典型的升溫速率為每秒0.6~1.8° C。升溫的最初90秒鐘應該盡可能保持線性。
RTS曲線的升溫基本原則是,曲線的三分之二在150° C以下。在這個溫度后,大多數錫膏內的活性系統(tǒng)開始很快失效。因此,保持曲線的前段冷一些將活性劑保持時間長一些,其結果是良好的濕潤和光亮的焊接點。
RTS曲線回流區(qū)是裝配達到焊錫回流溫度的階段。在達到150° C之后,峰值溫度應盡快地達到,峰值溫度應控制在215(± 5)° C,液化居留時間為60(± 15)秒鐘。液化之上的這個時間將減少助焊劑受夾和空洞,增加拉伸強度。和RSS一樣,RTS曲線長度也應該是從室溫到峰值溫度最大3.5~4分鐘,冷卻速率控制在每秒4° C。
某些機板鍍層可能會增加曲線峰值溫度,如果焊接“金蓋鎳”鍍層的焊盤,峰值溫度至少應達到220° C;這樣可以防止回流后溫度可靠性問題,因為錫和金在217° C形成第二種共晶合金。如果焊接有機表面防護劑涂層(OSP)的焊盤,可能要求達到225° C的峰值溫度,以完全滲透涂層。使用哪一種溫度曲線都有必要調節(jié)峰值溫度。
排除RTS曲線的故障
排除RSS和RTS曲線的故障,原則是相同的:按需要,調節(jié)溫度和曲線溫度的時間,以達到優(yōu)化的結果。時常,這要求試驗和出錯,略增加或減少溫度,觀察結果。以下是使用RTS曲線遇見的普遍回流問題,以及解決辦法。
焊錫球
許多細小的焊錫球鑲陷在回流后助焊劑殘留的周邊上。在RTS曲線上,這個通常是升溫速率太慢的結果,由于助焊劑載體在回流之前燒完,發(fā)生金屬氧化。這個問題一般可通過曲線溫升速率略微提高達到解決。焊錫球也可能是溫升速率太快的結果,但是,這對RTS曲線不大可能,因為其相對較慢、較平穩(wěn)的溫升。
焊錫珠
經常與焊錫球混淆,焊錫珠是一顆或一些大的焊錫球,通常落在片狀電容和電阻周圍(圖三)。雖然這常常是絲印時錫膏過量堆積的結果,但有時可以調節(jié)溫度曲線解決。和焊錫球一樣,在RTS曲線上產生的焊錫珠通常是升溫速率太慢的結果。這種情況下,慢的升溫速率引起毛細管作用,將未回流的錫膏從焊錫堆積處吸到元件下面?;亓髌陂g,這些錫膏形成錫珠,由于焊錫表面張力將元件拉向機板,而被擠出到元件邊。和焊錫球一樣,焊錫珠的解決辦法也是提高升溫速率,直到問題解決。
熔濕性差
熔濕性差(圖四)經常是時間與溫度比率的結果。錫膏內的活性劑由有機酸組成,隨時間和溫度而退化。如果曲線太長,焊接點的熔濕可能受損害。因為使用RTS曲線,錫膏活性劑通常維持時間較長,因此熔濕性差比RSS較不易發(fā)生。如果RTS還出現熔濕性差,應采取步驟以保證曲線的前面三分之二發(fā)生在150° C之下。這將延長錫膏活性劑的壽命,結果改善熔濕性。
焊錫不足
焊錫不足通常是不均勻加熱或過快加熱的結果,使得元件引腳太熱,焊錫吸上引腳?;亓骱笠_看到去錫變厚,焊盤上將出現少錫。減低加熱速率或保證裝配的均勻受熱將有助于防止該缺陷。
墓碑
墓碑通常是不相等的熔濕力的結果,使得回流后元件在一端上站起來(圖五)。一般,加熱越慢,板越平穩(wěn),越少發(fā)生。降低裝配通過183° C的溫升速率將有助于校正這個缺陷。
空洞
空洞是錫點的X光或截面檢查通常所發(fā)現的缺陷??斩词清a點內的微小“氣泡”(圖六),可能是被夾住的空氣或助焊劑??斩匆话阌扇齻€曲線錯誤所引起:不夠峰值溫度;回流時間不夠;升溫階段溫度過高。由于RTS曲線升溫速率是嚴密控制的,空洞通常是第一或第二個錯誤的結果,造成沒揮發(fā)的助焊劑被夾住在錫點內。這種情況下,為了避免空洞的產生,應在空洞發(fā)生的點測量溫度曲線,適當調整直到問題解決。
無光澤、顆粒狀焊點
一個相對普遍的回流焊缺陷是無光澤、顆粒狀焊點(圖七)。這個缺陷可能只是美觀上的,但也可能是不牢固焊點的征兆。在RTS曲線內改正這個缺陷,應該將回流前兩個區(qū)的溫度減少5° C;峰值溫度提高5° C。如果這樣還不行,那么,應繼續(xù)這樣調節(jié)溫度直到達到希望的結果。這些調節(jié)將延長錫膏活性劑壽命,減少錫膏的氧化暴露,改善熔濕能力。
燒焦的殘留物
燒焦的殘留物,雖然不一定是功能缺陷,但可能在使用RTS溫度曲線時遇見。為了糾正該缺陷,回流區(qū)的時間和溫度要減少,通常5° C。
結論
RTS溫度曲線不是適于每一個回流焊接問題的萬靈藥,也不能用于所有的爐或所有的裝配??墒?,采用RTS溫度曲線可以減少能源成本、增加效率、減少焊接缺陷、改善熔濕性能和簡化回流工序。這并不是說RSS溫度曲線已變得過時,或者RTS曲線不能用于舊式的爐。無論如何,工程師應該知道還有更好的回流溫度曲線可以利用。
注:所有溫度曲線都是使用Sn63/Pb37合金,183° C的共晶熔點。